skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blake, Geoff"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ruane, Garreth J (Ed.)
  2. Ruane, Garreth J (Ed.)
  3. Ruane, Garreth J (Ed.)
  4. Ruane, Garreth J (Ed.)
  5. null (Ed.)
    During the formation of terrestrial planets, volatile loss may occur through nebular processing, planetesimal differentiation, and planetary accretion. We investigate iron meteorites as an archive of volatile loss during planetesimal processing. The carbon contents of the parent bodies of magmatic iron meteorites are reconstructed by thermodynamic modeling. Calculated solid/molten alloy partitioning of C increases greatly with liquid S concentration, and inferred parent body C concentrations range from 0.0004 to 0.11 wt%. Parent bodies fall into two compositional clusters characterized by cores with medium and low C/S. Both of these require significant planetesimal degassing, as metamorphic devolatilization on chondrite-like precursors is insufficient to account for their C depletions. Planetesimal core formation models, ranging from closed-system extraction to degassing of a wholly molten body, show that significant open-system silicate melting and volatile loss are required to match medium and low C/S parent body core compositions. Greater depletion in C relative to S is the hallmark of silicate degassing, indicating that parent body core compositions record processes that affect composite silicate/iron planetesimals. Degassing of bare cores stripped of their silicate mantles would deplete S with negligible C loss and could not account for inferred parent body core compositions. Devolatilization during small-body differentiation is thus a key process in shaping the volatile inventory of terrestrial planets derived from planetesimals and planetary embryos. 
    more » « less